Sunday, August 17, 2025

Quantum echo in a superconductor can improve quantum technologies.

  Quantum echo in a superconductor can improve quantum technologies. 


"A surprising “Higgs echo” discovered in a superconductor reveals hidden quantum behaviors, offering tantalizing possibilities for future quantum technologies. Credit: Ames National Laboratory" (ScitechDaily, Scientists Discover Mysterious “Quantum Echo” in Superconductors)



Quantum echo in a superconductor can improve quantum technologies. 


In the image above, the text is the situation where the particle. Which is like a sombrero in its quantum field, faces the ring-shaped quantum field faces the ring-shaped quantum field. If that energy hill is in the ring-field. There is a possibility of transmitting waves into that ring-shaped field. And if there are two “almost” identical ring fields, the system can make superposition and entanglement using those fields. The fact is that the field should not be smooth. The “hills” and “valleys” over it form the gear. There are those “hills” and “valleys” that are things. 

That grabs the quantum field. And anchor it to the shell of the particle. Without those things, the field cannot connect to the particle. And the field just slides over it. 

Making it roll around the particle or field. If the field is absolutely smooth, that means that a quantum wire or any quantum field cannot grab that field. So, that causes the idea. Dark energy can be a smooth field. This could be the reason why it doesn’t interact with other fields like it should.  X-rays and gamma-rays are “smoother” waves because their wavelength is so short. That makes those waves tunnel through extremely thick walls.

In the same way, other smooth fields can tunnel themselves through the walls. In those cases, the field just pushes other fields from around it. And then that gives them the possibility to travel through the thick lead walls. 

The mysterious quantum echo in superconducting opens new visions in quantum systems. And their control. If we want to control a system. We must have knowledge of all its abilities. If there is an unknown actor. That destroys our ability to control that system. When researchers found an unknown quantum echo from superconductors. Their knowledge of the quantum field interaction grew. The origin of the quantum echo can be in the interaction between two superconducting fields that transport electricity. 

In models, the superconductivity forms when atoms in the electric wires are in extremely low energy levels. That turns them into the Bose-Einstein state. And in that state, quantum fields that surround those atoms turn into a united entirety. So there are no gaps between those quantum fields. And that makes the quantum field around the wire homogeneous and smooth. There, the wave travels without resistance. Normally, electricity travels above the shell of the wire in the form of wave movement. 

Atom oscillations cause the atoms’ quantum fields where the wave travels is non-homogeneous. Resistance forms when electricity jumps over those connection points of quantum fields. In that case. There form the counter wave forms in the receiving quantum field. And the electricity should cross the standing wave between those atoms. That means the system must raise the power all the time that it gets an electric signal to travel through the wire. 

In superconductors. The quantum fields are melted into a single entirety. That means there are no holes between those atoms’ quantum fields. Or those gaps are very small. But the quantum echo can form in situations where superconductivity is not complete. There can be small gaps between atoms. And in very low temperatures, standing waves between those atoms, or, otherwise saying, resistance is hard to measure. 

Information that travels in the superconductor’s quantum field is a wave. That means the wave just interacts with the field around it. This means that the quantum echo can form. When another superconducting wire sends a weak wave movement to another quantum field. If superconducting wires are close to each other and the electricity travels in opposite ways, a thing can form a quantum whirl between those superconducting wires. 

Those things can be useful in quantum memory solutions and quantum computers. There is a possibility that the system can use those quantum whirls to load information into superpositioned and entangled particles.  

Or maybe those whirls can make the superposition and entanglement themselves. Those whirls can form if the quantum fields around the superconducting wires can create a similar effect to what the air makes when tropical hurricanes are formed. Different ways traveling fields create similar whirls as air molecules create if two air flows travel in opposite directions.  Those whirls can also be used to transport atoms and other particles on the nanotechnical lattices. That thing can revolutionize quantum and nanotechnology. 

The waves in the superconducting fields can also make it possible to create new sensors. Those sensors are tools that can scan extremely smooth surfaces. And those systems can be the new and powerful detectors that can detect other quantum fields from long distances. 


https://scitechdaily.com/scientists-discover-mysterious-quantum-echo-in-superconductors/


No comments:

Post a Comment

Note: Only a member of this blog may post a comment.

Quantum echo in a superconductor can improve quantum technologies.

  Quantum echo in a superconductor can improve quantum technologies.  "A surprising “Higgs echo” discovered in a superconductor reveals...