Dark energy could be something incredible.
Can black holes be the source of dark energy?
The Dark Energy Spectroscopic Instrument, DESI, uncovers dark energy, and those observations reveal that dark energy can be something nobody expected. DESI’s observations suggest that black holes may be a source of dark energy. That means, there is a structure near the event horizon or in some energy fields near the black hole that transforms material or wave movement into dark energy. Dark energy could form when some structure pushes energy fields. Like some kind of rotating propeller. Or, we can say that the structure in the black hole or its environment just changes the wavelength of the radiation or visible energy so short that we cannot see that wavelength. Black holes are bright gamma- and X-ray objects.
There is a possibility that this bright high-energy radiation covers dark energy below it. The main question in this transformation model is simple. What is the wavelength that turns into dark energy? Does dark energy form when spinning structures interact with gamma-rays? Gamma-rays have the highest known energy level and the shortest known wavelength. So, can that interaction, with gravitation radiation, transform high-energy radiation into dark energy?
This model suggests that when high-power gravitational waves come out from the black hole. It changes the energy fields near the black hole. So, what are gravity waves? They are like energy potholes in the universe. They can form in situations when some shortwave wave movement travels against energy fields. That shortwave radiation pulls energy out from those fields, forming a ditch that pulls particles and other objects to the gravity center. That radiation or wave movement causes changes in the wavelengths of other radiation.
If black holes are the dark energy sources, that would be a more fundamental observation. Than nobody expected. Dark energy forms when some structure in the black hole pushes fields that fall into the gravitational center. A black hole's spinning binds energy into it. But the expansion of the universe causes a situation. Where that black hole loses its mass all the time. Laws of physics determine that energy cannot just vanish. It can turn into materia. And matter can turn into energy. That means the source of the dark energy can be in the black hole’s evaporation. When a black hole turns into radiation. That means it turns its mass into energy.
Could there be two versions of gravity?
1) Gravity that forms when a particle vaporizes or turns into wave movement. That vaporization or reaction where matter turns into energy or wave movement pulls energy to that particle. The evaporation makes an object a gravity center, which pulls particles into it. When a particle or any object, including a black hole, sends a wave movement, it releases energy, or wave movement. And that wave movement binds energy from other energy fields.
2) Another version of gravity can happen when fast-spinning black holes pull energy to the event horizon and near it. That energy travels to the spin axle, there it travels through the space. This thing means that the gravity center acts like a giant thermal pump. And if we think that the energy waves that travel in a relativistic jet are the string-shaped structure, those strings can bind energy from around them. That can mean that dark matter beams can be the source of dark matter, the mysterious gravity effect.
So can fast-moving thin energy fields, or energy waves, be the source for dark matter? That means when an energy beam travels in the universe very fast, it binds energy into itself. Or the string binds energy into its head. Then energy travels back in that string and pushes fields away from it. But first, that string’s energy level must turn so high that it can make that thing.
That model can explain why a long energy string, or a superstring, can be hot and cold at the same time. When a superstring collects energy into it, and if its speed is high enough, that can form an effect where energy travels out from the string from its back. So the string itself is not visible. But the energy field that it packs around it glows. And if that string can move energy in some direction in an extremely short-wave form, that means that the string packs energy from around it and turns its wavelength. When energy travels around those fast-moving strings, it forms a situation that looks like gravity.
Can the dark energy source be in the hypothetical dark matter particles interaction. Dark matter particles like weakly interacting massive particles, WIMPs, and axions are hypothetical particles. There is a possibility that fast-spinning particles can turn into string-shaped structures. So, the fast spin movement stretches those particles into the shape that seems like a superstring.
Another explanation for dark energy is that. Hypothetical dark matter particles. Or impacting gravitational waves, can form dark energy. Near black hole conditions are extreme. That means if there are dark matter particles or wave movement impacts. And maybe those impacting waves can form a wave movement that we cannot see. But the most exciting versions of those theories suggest that dark energy can form in gravitons. Those still hypothetical gravitational transpoting particles could be so-called quantum-size singularities or quantum-size black holes.
The model goes like this. Those particles will not actually form dark energy. They just transform other energy forms. Or wavelength, into dark energy. This happens when a particle affects a fundamental force’s wavelength. We know four fundamental forces. Those forces are gravity, electromagnetism, the weak nuclear force, and the strong nuclear force. Today, we call those four fundamental forces “fundamental interactions”. Every single fundamental interaction has a unique wavelength.
That wavelength depends on the size of its transportation particle, called bosons. Energy cannot form from nowhere, but it can change its form. When energy changes its form, that means its wavelength changes. So, theoretically is possible to transform gravity waves into electromagnetic energy. But the problem is this: we don’t have tensors that can make this thing.
That means that. The graviton simply moves wave motion to another place. So the gravity center acts like a thermal pump. The idea is that the energy travels. To the spin axle of the graviton. There, it moves out from the particle as a very thin energy string. And if gravitons form black holes, that means black hole transports energy to their poles. And then sends that energy as a string or a thin energy beam into the space. So when that happens, the reaction can look like gravitation.
https://scitechdaily.com/the-universes-engine-is-changing-desi-hints-dark-energy-isnt-what-we-thought/
https://en.wikipedia.org/wiki/Axion
https://en.wikipedia.org/wiki/Dark_energy
https://en.wikipedia.org/wiki/Dark_Energy_Spectroscopic_Instrument
https://en.wikipedia.org/wiki/Dark_matter
https://en.wikipedia.org/wiki/Graviton
https://en.wikipedia.org/wiki/Weakly_interacting_massive_particle
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.