Friday, September 12, 2025

What was before the Big Bang. (Part II)

  What was before the Big Bang. (Part II)


"Our universe could be the mirror image of an antimatter universe extending backwards in time. Groundbreaking research suggests that our universe has an antiuniverse twin. Physicists in Canada propose that our universe could be a reflection of an antimatter universe that existed before the Big Bang." (CREDIT: Getty Images)" The brighter side, Groundbreaking research suggests that our universe has an antiuniverse twin)

The antiuniverse or antiverse is the model. That is based on the supernova explosion model. When a large star explodes, that event forms a so-called time-glass nebula. So, could the Big Bang event have formed the two universes? The idea is that when two giant whirls. That spin was opposite. Those giant whirls formed the spark, or the explosion that sent two universes into different directions. If those proto-anti-universe and the proto-universe impacted. That could form the universe and the anti-universe. 

This question is one of the most interesting, because it helps researchers to calculate the values of the particles.  When a particle travels through the universe. Energy and quantum fields touch it. Those touches leave marks on those particles. And that helps to get information from distant galaxies. But this is not possible. If researchers don’t know the strength of those energy fields. This means that modeling the Big Bang makes it possible to calculate changes in the energy levels in an expanding universe. 

  

What energy should be in those particles that exist in the modern universe? 


And if researchers can calculate. What kind of energy should those particles have? They can search for differences between theoretical and real values. That gives data about the fields. That the particle faced. During its journey.  But it’s impossible to calculate theoretical values without knowing the beginning values. 

Was there some kind of energy flow that formed two opposite rotating whirls that were positive and negative (+ and -) universes? And was the Big Bang some kind of spark between those giant whirls?  That doesn’t mean that antiversum and universe require material. They require opposite fields that cause a similar reaction to the antimatter-matter annihilation. 

In some models, the energy arrow that traveled through the field formed two giant whirls. Those whirls can be the anti-universe and the universe. Or, those whirls were the positive and negative whirls. If those two positive and negative proto-universes act like matter and antimatter. They can pull each other together. 


Above: Time glass nebula. 

So can the antiverse explain the Big Bang? 


In this case, we should rather talk about the antiverse. As a mirror universe. Or, mirror protouniverse . Where there was some kind of material. We could say that in the case of the proto-universe, the antiversum was rather the whirl where energy fields rotate in the opposite direction. Than the other universe that we can call the “normal universe”. If the proto-universe and proto-anti-universe were oppositely rotating whirls in the energy field or in free gravitational wave movement. We can think that those whirls pulled each other together like antimatter and matter. Pulled each other together. 

It’s possible that those extremely large rotational whirls impact each other, and they formed the lightning or the spark. That spark could be like a shortcut between positive and negative fields, and that spark could be the thing that we can call the universe. When the Big Bang happened. Energy was homogenously spread through the entire universe. Then the universe's expansion made holes. In that homogenous energy field. And that caused situations where energy started to fill those holes. 

Could dark energy or some part of dark energy form when quarks or gluons collide with their antimatter pairs? That thing can mean that this kind of thing can put energy into moving. 

Can black holes’ relativistic jets be formed from new fermions in the universe? When we talk about black holes and their relativistic jets, they can form fermion-anti-fermion pairs. That means that effect condenses energy fields into the form of matter. That means if Schwinger effect forms matter in the modern universe, that thing forms fermion-antifermion pairs. And those particle-antiparticle pairs can annihilate, transforming into energy. So could dark energy’s source be in the quark and anti-quark annihilation? Or in some more exotic particles, annihilation, like the gluon-antigluon annihilation. 

This can mean that energy, or wave movement that travels into those energy holes, is stated to fill those holes, and the Schwinger effect could form material in those whirls. Some of those whirls could be so strong that the wave movement formed different-sized primordial black holes. The question is always. Do black holes' relativistic jets form new particles in the universe? Relativistic jets are the most powerful things in the universe. Because black holes also interact with dark matter and dark energy. That means a black hole can form two relativistic jets, visible and dark energy jets.    

When dark energy jets travel through the universe, they can turn dark energy fields into some kind of particles. The changes in dark energy could form. When dark energy turns into some kind of particles. When we think about the nature of energy, matter is one of the forms of energy. Particles are energy packages. When energy binds itself into matter or particles, that means that energy is away from its environment. 


https://www.thebrighterside.news/post/groundbreaking-research-suggests-that-our-universe-has-an-antiuniverse-twin/


https://phys.org/news/2024-06-partner-anti-universe-expansion-dark.amp


https://en.wikipedia.org/wiki/Big_Bang


https://en.wikipedia.org/wiki/Brane_cosmology


https://en.wikipedia.org/wiki/Dark_energy


https://en.wikipedia.org/wiki/Dark_matter


https://en.wikipedia.org/wiki/Schwinger_effect


No comments:

Post a Comment

Note: Only a member of this blog may post a comment.

What was before the Big Bang. (Part II)

  What was before the Big Bang. (Part II) "Our universe could be the mirror image of an antimatter universe extending backwards in time...