Skip to main content

How to send qubit in the long range?



All encryption systems have one weakness,  humans created them. And all humans make mistakes. How to send qubit in the long range? 


Can quantum cryptography be the next-generation communication tool? The answer is yes. The information that qubit involves may send in over long distances by using regular radios. The system works like this. Every single qubit's state will transmit to the receiver by using a unique radio frequency. 

In that system, the information will send to the receiver by using multiple radio frequencies, And the system cuts the message into pieces. That is sent precisely at the same moment. That means the ELINT men must capture messages from all frequencies that the transmitter uses. The use of multiple frequencies at the same time makes the message so short that part of it would not capture anyway. 

The receiving system will reassemble or resort to the information bites. The system can use serial numbers in the bites of the message. Those serial numbers allow the receiving system put those bites back in order. 


The diagram below portrays the model of the ultra-secure binary data transmission. 


*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

*=The encryption algorithm that can be unique for each data carrier byte. 

-=The data carrier byte. In that system, the receiving system can use the different encryption keys for opening every individual data-carrier byte. And those data-carrier bytes can send by using different radio frequencies. 


There is no unbreakable code. 


Modern encryption systems can cover all bytes that are traveling in the network by using unique code. In that model behind and after the information-carrier byte travels the encryption code. The ultra-secure quantum systems can involve multiple layers of encryption. The most out layer is the quantum system but also binary code can be protected by using encryption. And those systems still can be broken. 

The problem with all codes and encryption systems is. That they are all made by humans. This means that there is always a weak point in the encryption systems. If there is no weak point in the system itself. There are people, who are using computers. The attacker can track those people and use some drugs to make them tell what is in messages that certain computers or operators handle. 

Or the attacker can slip things like surveillance cameras into the computer room, and then that camera sends all data from the screens to the attacker. That means if you cannot go through the encryption you can always go around them and use alternative methods to break the code. And in this text term "breaking the code" means the ability to steal information. 

Stealing information is the objective of hackers. Cryptology is the race between code makers and code breakers. The first-generation systems were just kicking the intruders off the system when security tracked them. But the new AI-based systems use things called "honey pots". The honey pots are databases where is a certain type of information. But the vital part of that data is removed. Modern systems also inform their users about the anomalies of the user's behavior in the system. 


Honey pots are traps. They can send tracking cookies to attackers' computers.


But they can also make a profile of the intruder. The data that the intruder searches uncover what kind of data interests the hacker. And that data helps to find out the people who are cooperating with the hacker. The drug dealers and mafia men are interested in different types of information than the governmental security and intelligence services. 

The thing that makes quantum cryptology hard to break is that data is traveling in the form of the qubit. Qubit bases the superposition of the partciles. So in quantum systems data is packed in physical form. And the thing that makes quantum cryptology secure is that the data is lost from the qubit if somebody tries to steal it. 

So the user of the system knows if the qubit is stolen. And that gives a warning to the operators. But as I wrote the quantum systems can also leak. There is the possibility that somebody just drinks too much alcohol. And tells all secretive information to unauthorized people. 


Comments

Popular posts from this blog

Black holes cause a virtual redshift because gravitation stretches the wavelength near them.

At the beginning of this text is a film about the redshift of black holes. Gravitation stretches light, and that means gravitation fields are pulling waves longer. That thing is called the gravitational redshift. As you can see from the film, the black hole stretches radiation and distorts the redshift. Gravitational redshift, or virtual redshift, means that a black hole might seem to be at a longer distance than it is. The film shows the redshift of the star that orbits a supermassive black hole. But all other black holes interact the same way.  The event horizon is always constant. At that point, the black hole's escaping velocity is the same as the speed of light. So every black hole interacts basically in the same way. And it's possible to apply that model to all black holes irrespective of their size.  Is gravitation the thing that forms dark energy? That thing seems somehow strange. But when photons and other particles are traveling through the ball that forms the visible

The shape of the brain means more than neuro connectivity.

Well, we might say that the brain is in its entirety. Another thing is that all things in the brain have some kind of purpose. The shape of the brain and, especially, the folding of the brain shell are extremely important things. Those folds are expanding the brain's surface areas. And the brain shell has a primary role in the thinking process. The surface area of the brain determines how large the cerebral cortex is. And in a large cerebral cortex, there are a large number of neurons. But as I just wrote, the brain is in its entirety. "Researchers have discovered that the shape of a person’s brain significantly impacts thought, feeling, and behavior, overturning the prevailing emphasis on complex neuronal connectivity. Utilizing MRI scans and the principle of eigenmodes, they found that brain function is closely linked to its geometric properties, much like how the shape of a musical instrument determines its sound, offering new avenues for exploring brain function and diseas

New nanomaterial is 4 times harder than steel. And, at the same time 5 times lighter than steel.

 New nanomaterial is 4 times harder than steel. And, at the same time 5 times lighter than steel.  The new material is the hollow glass fiber with DNA molecules inside that structure. Or as you see from the image. The glass fibers are on both sides of the DNA.  DNA molecule is the thing, that involves the genetic code of the cells. Genetically engineered cells can make DNA, and those molecules can used as the nanomaterial's structures. DNA manipulation makes it possible to create new types of extremely strong materials. And those materials are stronger than steel and lighter than it. DNA molecules can act as nano-size springs.  And in some visions, genetically engineered cyborg cells like cyborg macrophages can make extremely long DNA molecules. And then they can just use those molecules as spears that can pierce wanted cells. Or those cyborg cells can also dumb targeted cells full of the DNA that terminates them immediately.  The DNA and nanotube combinations can also act as DNA-b