MOND (Modified Newtonian Dynamics): when gravitation interacts differently at low acceleration.
The first evidence of the existence of MOND (Modified Newtonian Dynamics) is true. That means Einstein and Newton were wrong, and the acceleration determines the gravitational interaction. The gravitational interaction is weaker when particles have low acceleration. And the increase in acceleration makes gravitation stronger. That means the MOND can make us rethink the form of gravitation. Or it can make us fill out the gravitational interaction model.
So the gravitational model goes like this:
Gravitation is like string. Graviton or some other particle pulls the channel behind it. That channel is like a wormhole. There is low electromagnetic pressure in that channel. The size of a graviton would be so small that the only wave movement that could go through that channel would be gravitational radiation or gravitational waves.
Or maybe there is no wave movement at all. When that string impacts some other particle, it pulls energy out of it at the gravitational center's side. That thing makes the particle travel in the direction of the gravitational center. The reason for that is that the other quantum fields push the particle in a direction with a lower energy level.
In that model, dark matter is the thing that forms when that string starts to pull gravitons back to the gravitational center. Graviton will stretch that string, and it can form the virtual particle called WIMP. I wrote that maybe gravitation interacts with particles through those WIMPs. That means the stretch or wave called WIMP acts like a hook that pushes particles with it.
In this gravitational model, the quantum field at the front of the particle pushes it into the gravitational center. The thing that determines whether particles can escape from the gravitational field is whether the quantum shadow at the front of the particle can pull it away. Or does the gravitational string, along with the quantum field at the front of the particle, push it back to the gravitational center?
Why does gravitation interact weakly with particles with low acceleration?
The answer is that particles travel through space in the electromagnetic tube. Electromagnetic radiation forms shadows on both sides of the particle. And when the particle's acceleration speed is high, that turns that tube or shadow at the front of the particle shorter. So the quantum field ahead of the particle pushes it back harder than if the particle's acceleration is low.
When a particle accelerates slowly, the shadow in front of it is longer than if the acceleration is strong. That means the quantum field at the front of the particle pushes the particle to the gravitational center weaker if the acceleration of the particle is lower. And that thing can explain why gravitation is what it is.
https://scitechdaily.com/conclusive-evidence-for-modified-gravity-collapse-of-newtons-and-einsteins-theories-in-low-acceleration/
Comments
Post a Comment