Skip to main content

The new methods can make compact GWD (Gravitational Wave Detectors) possible.


"The Kerr-enhanced optical spring method enhances gravitational wave detection, offering new insights into cosmic phenomena and neutron star structures. Credit: SciTechDaily.com" (ScitechDaily, Unlocking the Universe: Kerr-Enhanced Optical Springs for Next-Gen Gravitational Wave Detectors)



The next-generation gravity wave detectors can be more sensitive and compact than ever imagined. In some scenarios, the nano-size mirrors with as high a reflection as possible can create an optical structure. Where the laser ray's length is thousands of kilometers. This thing is quite hard to make. 

If researchers create that structure using mirrors that reflect 100%. The system can detect the brightness of laser rays. And when the gravity wave hits those laser rays, it changes their brightness. 

But the other thing is what if researchers can stretch light? In stretching light the length of the light surface is big. And that makes it possible to create a system. That can detect gravity waves


"Kerr-enhanced optical spring demonstrates tunable non-linearity, presenting potential applications for enhancing GWD sensitivity and in various optomechanical systems. Credit: Tokyo Tech" (ScitechDaily,Unlocking the Universe: Kerr-Enhanced Optical Springs for Next-Gen Gravitational Wave Detectors)


The Kerr-enhanced magneto-optical springs can make the next-generation gravity wave detectors (GWD)


But then we can imagine the case that the sensor uses the magneto-optical springs. In some ideas, the magneto-optical spinning structures can harvest the gravity waves, if they are sensitive enough. The problem is that gravity waves are so weak. Gravity waves must impact enough energy to the sensor that it can detect changes in its structure. 

The GWD sensors are the newest tools for the research universe. Those things offer the possibility of researching black hole's internal structures. 

The detectable gravity waves are forming in the black hole's event horizon. But their origin is far inside the event horizon. That means that black holes are like an onion of multiple internal gravity fields. 

All gravitational objects send gravity waves. Those things can also used to give information about the internal structures of other objects. But the problem is how to create GWD that has high enough accuracy. Gravity wave detectors are tools that give information about the most dominating force in the universe. 


Can we someday benefit from gravity waves as an energy source? 


The GWD sensors can also work as pathfinders for the systems that use gravity waves as an energy source. The sensor that measures gravitational waves harvests energy from those waves. Gravity waves can transfer energy to photons. Those things are interactions. And photons should also transfer energy to the gravity waves. 

So large-scale systems could use laser rays to capture gravity waves. Or gravity waves could transport energy to some lightweight, low-energy particles. And then laser rays can block the gravity waves. That thing makes those particles like free gluons or low-energy quarks deliver their extra energy. And maybe someday, we can make those gluon clouds. 


https://scitechdaily.com/unlocking-the-universe-kerr-enhanced-optical-springs-for-next-gen-gravitational-wave-detectors/


https://en.wikipedia.org/wiki/Kerr_effect


https://en.wikipedia.org/wiki/Magneto-optic_effect


https://en.wikipedia.org/wiki/Magneto-optic_Kerr_effect



Comments

Popular posts from this blog

Black holes cause a virtual redshift because gravitation stretches the wavelength near them.

At the beginning of this text is a film about the redshift of black holes. Gravitation stretches light, and that means gravitation fields are pulling waves longer. That thing is called the gravitational redshift. As you can see from the film, the black hole stretches radiation and distorts the redshift. Gravitational redshift, or virtual redshift, means that a black hole might seem to be at a longer distance than it is. The film shows the redshift of the star that orbits a supermassive black hole. But all other black holes interact the same way.  The event horizon is always constant. At that point, the black hole's escaping velocity is the same as the speed of light. So every black hole interacts basically in the same way. And it's possible to apply that model to all black holes irrespective of their size.  Is gravitation the thing that forms dark energy? That thing seems somehow strange. But when photons and other particles are traveling through the ball that forms the visible

The shape of the brain means more than neuro connectivity.

Well, we might say that the brain is in its entirety. Another thing is that all things in the brain have some kind of purpose. The shape of the brain and, especially, the folding of the brain shell are extremely important things. Those folds are expanding the brain's surface areas. And the brain shell has a primary role in the thinking process. The surface area of the brain determines how large the cerebral cortex is. And in a large cerebral cortex, there are a large number of neurons. But as I just wrote, the brain is in its entirety. "Researchers have discovered that the shape of a person’s brain significantly impacts thought, feeling, and behavior, overturning the prevailing emphasis on complex neuronal connectivity. Utilizing MRI scans and the principle of eigenmodes, they found that brain function is closely linked to its geometric properties, much like how the shape of a musical instrument determines its sound, offering new avenues for exploring brain function and diseas

New nanomaterial is 4 times harder than steel. And, at the same time 5 times lighter than steel.

 New nanomaterial is 4 times harder than steel. And, at the same time 5 times lighter than steel.  The new material is the hollow glass fiber with DNA molecules inside that structure. Or as you see from the image. The glass fibers are on both sides of the DNA.  DNA molecule is the thing, that involves the genetic code of the cells. Genetically engineered cells can make DNA, and those molecules can used as the nanomaterial's structures. DNA manipulation makes it possible to create new types of extremely strong materials. And those materials are stronger than steel and lighter than it. DNA molecules can act as nano-size springs.  And in some visions, genetically engineered cyborg cells like cyborg macrophages can make extremely long DNA molecules. And then they can just use those molecules as spears that can pierce wanted cells. Or those cyborg cells can also dumb targeted cells full of the DNA that terminates them immediately.  The DNA and nanotube combinations can also act as DNA-b