Skip to main content

The bulletproof clothes might be true somewhere in the distant future.

(Picture 1)


Kimmo Huosionmaa

The graphene might be very advanced material alone, but connecting those graphite layers together with another material gives graphene more advanced affection. I'm writing here about the material, what consists graphene with two layers, and in the middle of those layers could be the titanium structure, what works like spring.


Material works like that the outer structure will take the punch, and between those layers is so-called nano-springs, what will suck the power of the punch, before it will conduct to the downed layer of the graphene. That might give the graphene even more capacity, than what it has now. When we are talking about graphene as the material of the bulletproof vests and clothes, we must create some kind of different material that graphene.

2D graphite network would give awesome capacities for the solid surfaces, and if the graphene can put in some particular profile, that can be used as the cover the surfaces of the fighter like F-16. The double surface nano-spring graphene could give more heat and punch tolerance for those aircraft and of course, that material can be used at any surface in the world. When the bulletproof material is in the multi-layer structure, it will be more effective stopper than single layer material.


If there will be little room, what separates the surfaces that will five very good isolation against heat. This kind of information is taken by the spacecraft, what needs protection against micrometeorites. But when we would want to make the bulletproof clothes, we might want to have the material, what feels soft like normal canvas, but could stop the bullets. That kind of material seems very difficult to make, but it might be possible.

(Picture 2)


A surface of the canvas-structure would be covered with nano-technical springs and little plates of fullerene, and that could give the clothes, what feels normal the capacity to stop the bullet. The thing would go that the short but the powerful punch would make those springs to kick back against the punch.

Nano-springs need special shape, and that's why those things are quite expensive and complicated to build. In that nanomachine is installed little lever, what will pull the spring upwards. The production of the nanomachines would happen with some genetically manipulated cells, what can produce the right molecules, what would be put in the places with the ion-cannons or by the viruses, what has wires, that could transfer by electric fields.


Those viruses seem like some kind of the moon module, and their "feet" would help them to the position in the right point of the ion-pump, what will suck the DNA in the cell, and the cores of those viruses could be used as the nanorobots, what will assembly the complicated nano-machines. In the world of nanomachines could the little electric motors made by cutting the motors of the bacteria away from the cells, and then there will put the very thin kevlar fiber with small iron bites, what can use for moving the nano-submarines.


The problem of complicated nano-structures is that the instruments, what is needed in those processes are very small. That's why the controlling of those things is so difficult. And the production of complicated structures is very difficult, and those things must produce billions.  But if those complicated nano-springs can someday product with mass production, there could be possible to make the clothes, what are covered by those things.

Picture 1

https://www.theneweconomy.com/wp-content/uploads/2014/03/Graphene.jpg


Picture 2

https://d1o50x50snmhul.cloudfront.net/wp-content/uploads/2014/07/dn25954



Comments

Popular posts from this blog

Quantum breakthrough: stable quantum entanglement at room temperature.

"Researchers have achieved quantum coherence at room temperature by embedding a light-absorbing chromophore within a metal-organic framework. This breakthrough, facilitating the maintenance of a quantum system’s state without external interference, marks a significant advancement for quantum computing and sensing technologies". (ScitechDaily, Quantum Computing Breakthrough: Stable Qubits at Room Temperature) Japanese researchers created stable quantum entanglement at room temperature. The system used a light-absorbing chromophore along with a metal-organic framework. This thing is a great breakthrough in quantum technology. The room-temperature quantum computers are the new things, that make the next revolution in quantum computing. This technology may come to markets sooner than we even think. The quantum computer is the tool, that requires advanced operating- and support systems.  When the support system sees that the quantum entanglement starts to reach energy stability. I

The anomalies in gravity might cause dark energy.

"Physicists at UC Berkeley immobilized small clusters of cesium atoms (pink blobs) in a vertical vacuum chamber, then split each atom into a quantum state in which half of the atom was closer to a tungsten weight (shiny cylinder) than the other half (split spheres below the tungsten). (ScitechDaily, Beyond Gravity: UC Berkeley’s Quantum Leap in Dark Energy Research) By measuring the phase difference between the two halves of the atomic wave function, they were able to calculate the difference in the gravitational attraction between the two parts of the atom, which matched what is expected from Newtonian gravity. Credit: Cristian Panda/UC Berkeley" (ScitechDaily, Beyond Gravity: UC Berkeley’s Quantum Leap in Dark Energy Research) Researchers at Berkeley University created a model that can explain the missing energy of the universe. The idea is that the particles and their quantum fields are whisk-looking structures. Those structures form the superstrings that are extremely thi

Neon and time crystals can be the new tools for quantum computing.

"New research investigates the electron-on-solid-neon qubit, revealing that small bumps on solid neon surfaces create stable quantum states, enabling precise manipulation. This research, supported by multiple foundations, emphasizes the importance of optimizing qubit fabrication, moving us closer to practical quantum computing solutions." (ScitechDaily, Quantum Riddle Solved? How Solid Neon Qubits Could Change Computing Forever) Researchers created a superposition in solid neon. And those neon ions, where the system creates superposition in their surfaces.  Making it possible to manipulate those atoms. The atom-based qubit has one problem. Orbiting electrons cause turbulence in their quantum fields. The thing that can solve the problem is to use the quantum fields for the superposition.  If the system can position electrons at a certain point, it can make a small hill to the atom's surface. And the system can use that thing for making quantum superposition between the mos