The network of the superpositioned and entangled particles can make theoretically stable qubits possible. In that model, when both quantum entanglement sides reach the same energy level, the system forms new superpositioned and entangled particle pairs using the receiving particle of the particle pairs. And then. It transmits data to the third part of the quantum entanglement. That allows the system to create a network, where quantum entanglements. When the first particle pair energy level reaches the same level, that thing can transport information into the new quantum entanglement.
The quantum system puts two particles in line when it starts to make quantum superpositions and entanglement. During this process, that system points energy to another particle. That energy forms the quantum shadow or quantum tunnel between those particles. Then energy shadow pulls information into that channel.
And then that thing adjusts the oscillation in the receiving part of the entanglement pair. The higher energy particle is transmitting, and the lower energy particle is the receiver part. Energy always travels to lower energy areas. If the energy levels on both sides of the quantum entanglement are at the same level, information will not travel.
The requirement for quantum entanglement is that another side of the superpositioned and entangled particles is on a lower energy level than the transmitting side. When the quantum entanglement reaches the same energy level on both sides, it destroys the entanglement.
There forms a standing wave between those particles. Reflection from that wave destroys the quantum entanglement. Reflecting energy pushes those particles away from the entirety. That limits the use of the quantum computers. The problem is that the quantum entanglement's receiving part's energy level rises. If the system can transmit energy from the receiving side, it can handle that problem.
There are three ways to handle that problem. The first way is to put the quantum shadow over the quantum entanglement and that thing decreases its energy level. Then the system can raise the energy level on the transmitting side. In that version, the system decreases the quantum entanglement energy level to a minimum level and the system raises the transmitting side's energy level.
The second way is to use the double entanglement. When the receiving side of the quantum entanglement reaches the same energy level as the transmitting side, that system can make a superposition from the receiving side to another particle. That turns the receiving side into the transmitting side, and then the system can transport data to the new quantum entanglement. Using those systems researchers can make a theoretically unlimited network of superpositioned and entangled particles.
Another possibility to handle receiving is the quantum thermal pump that can control the energy level of the receiving part of quantum entanglement.
The quantum thermal pump that can transmit energy away from the receiving part of the quantum entanglement can extend the existence of the quantum entanglement.
The solution can be the third particle. That is in the line, with the receiving particle. The third particle must be bigger than the receiving particle. That thing forms an electromagnetic shadow over the receiving particle. Or the system can transport lower energy particles near the receiving particle. The idea is that the lower-energy particle or lower-energy channel makes energy travel out from the receiving particle. And that makes it possible to conduct energy away from the receiving particle.
Comments
Post a Comment