Skip to main content

Riemann and beyond

   

Riemann and beyond




"The real part (red) and the imaginary part (blue). Of the Riemann zeta function along with the critical line Re(s) = 1/2. The first non-trivial zeros can be seen at Im(s) = ±14.135, ±21.022, and ±25.011". (Wikipedia/Riemann hypothesis) (https://en.wikipedia.org/wiki/Riemann_hypothesis)


The thing is that Riemann's conjecture has been waiting for solving. And that thing is one of the things that are remarkable in the history of data science. We have left our data security for the "hands" of over 160 years old algorithms. And when Riemann created his famous conjecture. The thing is that he didn't have supercomputers. Or quantum computers in use. 

And that means that Riemann's conjecture just waits for solving. And non-trivial errors mean that the security of the entire Internet has been dangered. But Riemann's conjecture is one of the examples of the meanless things which have turned into remarkable things in history. Riemann's conjecture was the meanless thing when it was created. But computers turned it one of the most important things in history. 

The primary computers are useless if data is encrypted by using the quantum system. And the quantum systems can break the codes and security algorithms that are made by using primary computers. The thing is that the security algorithms can use so-called precise algorithms that will only slow the breaking process. 

The precise or high-accurate algorithms mean that every mark or Ascii code is encrypted separately by using individual quantum prime numbers. That thing is making the code-breaking process more difficult. But quantum computers can handle that situation very effectively. 

Another thing that was meanless when it was invented was quantum entanglement. Einstein's spooky effect in distance means that when the particles are connected. And they will put to oscillate with the same frequency. That means there is quantum lighting or string between particles. 

One thing that is important in quantum entanglement is that for making that thing successful the particles must superposition before that thing can make. The superposition means that the oscillation of the particles will be synchronized with the same frequency. 

Quantum computers require superpositioned and entangled particles. Those computers are millions of times more powerful than binary computers. And the thing is that those systems can break any code that is made by using binary computers. That means the data security of the Internet is gone until the next security algorithm is made. 


https://en.wikipedia.org/wiki/Riemann_hypothesis


https://thoughtandmachines.blogspot.com/


Comments

Popular posts from this blog

Black holes cause a virtual redshift because gravitation stretches the wavelength near them.

At the beginning of this text is a film about the redshift of black holes. Gravitation stretches light, and that means gravitation fields are pulling waves longer. That thing is called the gravitational redshift. As you can see from the film, the black hole stretches radiation and distorts the redshift. Gravitational redshift, or virtual redshift, means that a black hole might seem to be at a longer distance than it is. The film shows the redshift of the star that orbits a supermassive black hole. But all other black holes interact the same way.  The event horizon is always constant. At that point, the black hole's escaping velocity is the same as the speed of light. So every black hole interacts basically in the same way. And it's possible to apply that model to all black holes irrespective of their size.  Is gravitation the thing that forms dark energy? That thing seems somehow strange. But when photons and other particles are traveling through the ball that forms the visible

The shape of the brain means more than neuro connectivity.

Well, we might say that the brain is in its entirety. Another thing is that all things in the brain have some kind of purpose. The shape of the brain and, especially, the folding of the brain shell are extremely important things. Those folds are expanding the brain's surface areas. And the brain shell has a primary role in the thinking process. The surface area of the brain determines how large the cerebral cortex is. And in a large cerebral cortex, there are a large number of neurons. But as I just wrote, the brain is in its entirety. "Researchers have discovered that the shape of a person’s brain significantly impacts thought, feeling, and behavior, overturning the prevailing emphasis on complex neuronal connectivity. Utilizing MRI scans and the principle of eigenmodes, they found that brain function is closely linked to its geometric properties, much like how the shape of a musical instrument determines its sound, offering new avenues for exploring brain function and diseas

New nanomaterial is 4 times harder than steel. And, at the same time 5 times lighter than steel.

 New nanomaterial is 4 times harder than steel. And, at the same time 5 times lighter than steel.  The new material is the hollow glass fiber with DNA molecules inside that structure. Or as you see from the image. The glass fibers are on both sides of the DNA.  DNA molecule is the thing, that involves the genetic code of the cells. Genetically engineered cells can make DNA, and those molecules can used as the nanomaterial's structures. DNA manipulation makes it possible to create new types of extremely strong materials. And those materials are stronger than steel and lighter than it. DNA molecules can act as nano-size springs.  And in some visions, genetically engineered cyborg cells like cyborg macrophages can make extremely long DNA molecules. And then they can just use those molecules as spears that can pierce wanted cells. Or those cyborg cells can also dumb targeted cells full of the DNA that terminates them immediately.  The DNA and nanotube combinations can also act as DNA-b