Skip to main content

New ultra-thin materials are opening the road to personal quantum devices.



The ultra-thin materials are key for making the new type of hybrid quantum processors. The new material is the forming of one atom layer. And they are consisting of the channels where qubits can travel or they can anneal. The quantum annealing systems can be the extremely stable carbon crystal. Between one atom thin graphene or silicon layers. The problem with quantum computers is that the input system for data is problematic. 

Those systems must calibrate to operate in the quantum world. Normal keyboards and screens are using binary computing. And the problem is that the qubit is not similar to a binary computer. When we think that the qubit is like a hard disk that travels in the quantum tube. We can model that the qubit is the electron that has a minimum of three states. And there are let's say 10 accelerator lines or nanotubes where those electrons are traveling. 

So that kind of quantum processor has 30 states in the qubit. The system can benefit the nano-scale binary processors very effectively. In that case, there would be the nanotechnical binary processor at both ends of the nanotube. That means that every binary processor will operate with one qubit line. And that thing makes it possible to make the new smaller-size quantum computer. 


Superconducting copper wires can act as qubits. The qubit's state can determine by the voltage level in the wires. 





1) The input routes to 

2)Binary processors that are loading data to qubits

3)The route of the qubit

4)Receiver and decoder system. That system turns qubits back to the binary system.

5)The binary output to the screens and other output devices. 


The diagram above introduces the quantum processor that has four accelerator lines. There can be four-state qubits that are traveling in the quantum channel. The fact is that there is the theoretical possibility to make those quantum channels by using normal copper wires. 

The thing is that portable quantum computers have fewer qubit layers or states than some super quantum systems. So when we are trying to compare quantum and binary computers we cannot expect that our laptops can make the same things as some supercomputer. 

The superconducting electric wires can transmit electricity in the form where it is sent to that wire. The boxes are at the ends of the system. Are binary processors. That transforms data flow that comes from binary system to quantum mode. And then another binary system will decode them to screens and other output devices. 


https://phys.org/news/2022-01-ultrathin-materials-pave-personal-sized-quantum.html

Image:) https://phys.org/news/2022-01-ultrathin-materials-pave-personal-sized-quantum.html


Comments

Popular posts from this blog

Quantum breakthrough: stable quantum entanglement at room temperature.

"Researchers have achieved quantum coherence at room temperature by embedding a light-absorbing chromophore within a metal-organic framework. This breakthrough, facilitating the maintenance of a quantum system’s state without external interference, marks a significant advancement for quantum computing and sensing technologies". (ScitechDaily, Quantum Computing Breakthrough: Stable Qubits at Room Temperature) Japanese researchers created stable quantum entanglement at room temperature. The system used a light-absorbing chromophore along with a metal-organic framework. This thing is a great breakthrough in quantum technology. The room-temperature quantum computers are the new things, that make the next revolution in quantum computing. This technology may come to markets sooner than we even think. The quantum computer is the tool, that requires advanced operating- and support systems.  When the support system sees that the quantum entanglement starts to reach energy stability. I

The anomalies in gravity might cause dark energy.

"Physicists at UC Berkeley immobilized small clusters of cesium atoms (pink blobs) in a vertical vacuum chamber, then split each atom into a quantum state in which half of the atom was closer to a tungsten weight (shiny cylinder) than the other half (split spheres below the tungsten). (ScitechDaily, Beyond Gravity: UC Berkeley’s Quantum Leap in Dark Energy Research) By measuring the phase difference between the two halves of the atomic wave function, they were able to calculate the difference in the gravitational attraction between the two parts of the atom, which matched what is expected from Newtonian gravity. Credit: Cristian Panda/UC Berkeley" (ScitechDaily, Beyond Gravity: UC Berkeley’s Quantum Leap in Dark Energy Research) Researchers at Berkeley University created a model that can explain the missing energy of the universe. The idea is that the particles and their quantum fields are whisk-looking structures. Those structures form the superstrings that are extremely thi

Neon and time crystals can be the new tools for quantum computing.

"New research investigates the electron-on-solid-neon qubit, revealing that small bumps on solid neon surfaces create stable quantum states, enabling precise manipulation. This research, supported by multiple foundations, emphasizes the importance of optimizing qubit fabrication, moving us closer to practical quantum computing solutions." (ScitechDaily, Quantum Riddle Solved? How Solid Neon Qubits Could Change Computing Forever) Researchers created a superposition in solid neon. And those neon ions, where the system creates superposition in their surfaces.  Making it possible to manipulate those atoms. The atom-based qubit has one problem. Orbiting electrons cause turbulence in their quantum fields. The thing that can solve the problem is to use the quantum fields for the superposition.  If the system can position electrons at a certain point, it can make a small hill to the atom's surface. And the system can use that thing for making quantum superposition between the mos