Skip to main content

What makes neutrinos so interesting?


Neutrino is a so-called ghost particle. There is only a small interaction between neutrino and other particles and that's why neutrino can travel through the planets. In the nucleus of stars, particle-wave duality forms the neutrinos. And that thing makes them very interesting. If some researchers can create synthetic neutrinos and make them interact. 

The thing that makes the neutrinos interesting is that they are forming at an extremely high energy level. Sometimes is introduced that some neutrinos were tachyons that are fallen from their energy level. So when we are thinking that the fourth dimension is the certain energy level or the point of energy levels where the particle is disappearing. 

That thing means, that the nuclei of the stars are closer to the fourth dimension than other places in the universe. So there might be particles that are not existing in the other places in the universe. The reason for this theory is that hot stars are forming more neutrinos than cold stars. 

So neutrinos are forming between particles that are connected in nuclear fusion. The flashing quantum fields are forming those ghost particles. And in that place of billions of degrees celsius, the energy load keeps those particles stable. In hot stars, those flashes happen more often than in cold stars. 

That allows us to use them in quantum computers and quantum sensors. The thing that makes neutrino tunnel itself through the planets is one of the biggest things in the world. Sometimes is introduced that the neutrino has so strong quantum field or some kind of bipolar quantum field that pushes the atoms or their quantum fields away from its path. 

Could neutrino be the missing particle between photon and Higgs boson? The idea is that when the hypothetical tachyon falls from the fourth dimension to the third dimension it transforms into a photon. And then to Higgs boson or neutrino. We cannot see the tachyon itself. But we can see the photon. 


So if the chain of the energy loose reaction of a tachyon is like this: 

Tachyon>>Doppler field>>Photon>>?>>Higgs boson>>?. In the point of the question mark is the neutrino. The question is what would be the position of neutrino in this series? 

Ions can theoretically make the same thing. But then the opposite polar field will impact and slows them. Ions are acting a little bit like the neutrino. They can also tunnel themselves through the material. And when they will stop those things remove their energy from the material. If somebody can make the same thing to neutrino that will open a new page in the field of electromagnetic power systems, quantum computing, and weapon research. 

If we want to weaponize neutrinos, that thing requires that the system creates synthetic neutrinos. And then it must shoot them to target. A neutrino can travel through the strongest bunkers and if the system can stop them in the right place neutrinos send their energy as the wave movement. 

Synthetic neutrinos are heavier than photons. If the rocket engine can use neutrinos as the propellant they can give more punch than photons. So neutrino rocket can be one of the interstellar rocket concepts that can send to other solar systems in the distant future. 

The neutrino is hoped also to give answers for existing of the hypothetical particles like tachyon and graviton. The existence of a tachyon is impossible to see because its energy level is too high that it can interact. So tachyons are in the fourth dimension. But sometimes that hypothetical tachyon loses its energy and falls to the third dimension. During that process, it transforms into the photon and then to the Higgs boson or neutrino. 


https://www.cnet.com/science/space/features/what-is-a-neutrino-the-missing-key-to-modern-physics-could-be-a-ghost-particle/


See also:

Fourth dimension

Graviton

Higgs boson

Neutrino

Tachyon


https://artificialintelligenceandindividuals.blogspot.com/

Comments

Popular posts from this blog

Quantum breakthrough: stable quantum entanglement at room temperature.

"Researchers have achieved quantum coherence at room temperature by embedding a light-absorbing chromophore within a metal-organic framework. This breakthrough, facilitating the maintenance of a quantum system’s state without external interference, marks a significant advancement for quantum computing and sensing technologies". (ScitechDaily, Quantum Computing Breakthrough: Stable Qubits at Room Temperature) Japanese researchers created stable quantum entanglement at room temperature. The system used a light-absorbing chromophore along with a metal-organic framework. This thing is a great breakthrough in quantum technology. The room-temperature quantum computers are the new things, that make the next revolution in quantum computing. This technology may come to markets sooner than we even think. The quantum computer is the tool, that requires advanced operating- and support systems.  When the support system sees that the quantum entanglement starts to reach energy stability. I

The anomalies in gravity might cause dark energy.

"Physicists at UC Berkeley immobilized small clusters of cesium atoms (pink blobs) in a vertical vacuum chamber, then split each atom into a quantum state in which half of the atom was closer to a tungsten weight (shiny cylinder) than the other half (split spheres below the tungsten). (ScitechDaily, Beyond Gravity: UC Berkeley’s Quantum Leap in Dark Energy Research) By measuring the phase difference between the two halves of the atomic wave function, they were able to calculate the difference in the gravitational attraction between the two parts of the atom, which matched what is expected from Newtonian gravity. Credit: Cristian Panda/UC Berkeley" (ScitechDaily, Beyond Gravity: UC Berkeley’s Quantum Leap in Dark Energy Research) Researchers at Berkeley University created a model that can explain the missing energy of the universe. The idea is that the particles and their quantum fields are whisk-looking structures. Those structures form the superstrings that are extremely thi

Neon and time crystals can be the new tools for quantum computing.

"New research investigates the electron-on-solid-neon qubit, revealing that small bumps on solid neon surfaces create stable quantum states, enabling precise manipulation. This research, supported by multiple foundations, emphasizes the importance of optimizing qubit fabrication, moving us closer to practical quantum computing solutions." (ScitechDaily, Quantum Riddle Solved? How Solid Neon Qubits Could Change Computing Forever) Researchers created a superposition in solid neon. And those neon ions, where the system creates superposition in their surfaces.  Making it possible to manipulate those atoms. The atom-based qubit has one problem. Orbiting electrons cause turbulence in their quantum fields. The thing that can solve the problem is to use the quantum fields for the superposition.  If the system can position electrons at a certain point, it can make a small hill to the atom's surface. And the system can use that thing for making quantum superposition between the mos