Skip to main content

Quantum computers can find dark matter.


"In a new breakthrough, scientists at the U.S. Department of Energy’s Fermilab have found a way to detect dark matter using quantum computers." (ScitechDaily.com/U.S. Dept of Energy Breakthrough: Detecting Dark Matter With Quantum Computers)


1) How do quantum computers detect dark matter?


The idea of quantum computers is that they use very highly controlled superpositioned and entangled photonic qubits. The idea is that the system pack information photons. And then that photon will be superpositioned and entangled. If that superpositioned and entangled photon touches something. 

That "something" causes a disturbance in the energy level of that superpositioned and entangled particle pair. So if the superpositioned and entangled qubit touches the dark matter. That thing causes disturbance of the energy levels. 


2) What the dark matter could be? 


Dark matter is interesting. 85% of the material in the universe is formed of dark matter. That is the gravitational effect whose source is unknown. The thing that makes the dark matter interesting. Is that it can interact with visible material only by gravitation. There are galaxies there is no dark matter. And that tells that it can form similar clouds as visible material. But what is dark matter? 


There are a couple of theories about that thing. 


*Is dark matter a so-called black photon?


The idea of black photons comes from the idea that the Schwinger effect that formed all matter during the Big Bang forms two particles. Schwinger effect forms particle-antiparticle pair. So the photon should also have anti-particle pair. That "anti-photon" should be a so-called "black photon". 


*Dark matter is virtual material. 


The term "virtual material" means that dark matter could be some hollow quantum field. That quantum field can be a 2-dimensional energy ring that causes forming of a virtual black hole in that ring-shaped structure. That thing explains why it's so hard to detect. 

There is a possibility that also hyper energy photons or some unknown very heavy but small particles are forming that mysterious dark matter. That particle could be like Higgs Boson. But it could exist only small moment. And when that particle vaporizes, it forms the thing called dark energy. 

So in this model dark energy and dark matter have the same source. But where that hypothetical vaporization happens? Does it happen in the plasma of the universe or outside the plasma bubble that is called the universe? 


*Dark matter is extremely high and low energy particles. 


The idea is that dark matter can be so high-energy level particles that they are pushing all radiation away from them. That makes those particles act like stealth aircraft. When wave motion travels or flows over them that causes the situation that there is no reflection from that matter. 

In the low energy model, the dark matter is simple flat material. The energy level of that material is so low that it cannot react.


*Dark matter is quantum-size black holes. 


There is the possibility that dark matter is quantum-size black holes or mysterious graviton particles. If that model is true that explains why we cannot see that particle. In that model, the whisk-looking structure of elementary particles would form at the surface of the magnetic field of that extremely small particle. So the quantum-size black hole hovers in the middle of the quark. 


https://scitechdaily.com/u-s-dept-of-energy-breakthrough-detecting-dark-matter-with-quantum-computers/


Comments

Popular posts from this blog

Black holes cause a virtual redshift because gravitation stretches the wavelength near them.

At the beginning of this text is a film about the redshift of black holes. Gravitation stretches light, and that means gravitation fields are pulling waves longer. That thing is called the gravitational redshift. As you can see from the film, the black hole stretches radiation and distorts the redshift. Gravitational redshift, or virtual redshift, means that a black hole might seem to be at a longer distance than it is. The film shows the redshift of the star that orbits a supermassive black hole. But all other black holes interact the same way.  The event horizon is always constant. At that point, the black hole's escaping velocity is the same as the speed of light. So every black hole interacts basically in the same way. And it's possible to apply that model to all black holes irrespective of their size.  Is gravitation the thing that forms dark energy? That thing seems somehow strange. But when photons and other particles are traveling through the ball that forms the visible

The shape of the brain means more than neuro connectivity.

Well, we might say that the brain is in its entirety. Another thing is that all things in the brain have some kind of purpose. The shape of the brain and, especially, the folding of the brain shell are extremely important things. Those folds are expanding the brain's surface areas. And the brain shell has a primary role in the thinking process. The surface area of the brain determines how large the cerebral cortex is. And in a large cerebral cortex, there are a large number of neurons. But as I just wrote, the brain is in its entirety. "Researchers have discovered that the shape of a person’s brain significantly impacts thought, feeling, and behavior, overturning the prevailing emphasis on complex neuronal connectivity. Utilizing MRI scans and the principle of eigenmodes, they found that brain function is closely linked to its geometric properties, much like how the shape of a musical instrument determines its sound, offering new avenues for exploring brain function and diseas

New nanomaterial is 4 times harder than steel. And, at the same time 5 times lighter than steel.

 New nanomaterial is 4 times harder than steel. And, at the same time 5 times lighter than steel.  The new material is the hollow glass fiber with DNA molecules inside that structure. Or as you see from the image. The glass fibers are on both sides of the DNA.  DNA molecule is the thing, that involves the genetic code of the cells. Genetically engineered cells can make DNA, and those molecules can used as the nanomaterial's structures. DNA manipulation makes it possible to create new types of extremely strong materials. And those materials are stronger than steel and lighter than it. DNA molecules can act as nano-size springs.  And in some visions, genetically engineered cyborg cells like cyborg macrophages can make extremely long DNA molecules. And then they can just use those molecules as spears that can pierce wanted cells. Or those cyborg cells can also dumb targeted cells full of the DNA that terminates them immediately.  The DNA and nanotube combinations can also act as DNA-b