Skip to main content

Gravitational lensing and black holes can uncover the secret of dark matter and maybe also dark energy.


But let's start with hyperdrives. 


When energy travels in the particle, it increases its speed, or the particle accelerates. At the point in the acceleration track where a particle reaches energy stability, it delivers as much energy, as it gets from outside. And, at that point, acceleration ends. When energy starts to transfer out from the particle its speed decreases. 

In some models, the laser beam will aim to the point where the particle's speed is as close to the speed of light as possible. When that beam crosses the road of the particle, it will reach a higher speed than the speed of light.  Another version is that the quantum thermal pump will pull energy out from the internal structure of the particle. In that model, the quantum-size laser ray will send through the particle. 

So if there made a lower energy channel in the particle. That thing can turn energy travel inside the particle when it reaches the speed of light. 

In that model, the hyperdrive is the laser ray or ion beam that travels through the spacecraft. That kind of system makes the craft lower energy or colder. And then that system pulls energy out from the craft's shell. That thing makes it possible. That energy travels in it longer than in regular cases. 



The black hole pulls energy or a quantum field inside it. 


A black hole is an extremely powerful object that pulls particles inside it. And researchers hope that black holes can uncover the secrets of dark energy. There is the theory. That the black holes form whirls that cause friction or interaction between WIMPs (Weakly Interactive Massive Particles). 

And those whirls are the source of dark energy. And the thing is that kinds of models are always as good as other models until they are proven wrong. Researchers hope that the gravitational waves of black holes and kilonova explosions push the dark matter so dense that it can interact with visible material. 

The problem with a black hole is that pulls its environment inside it. That thing causes a situation. That particles act like the cork in the river. In that case, the interaction between the particle and the field that transfers it to the black hole is weak. Or otherwise thinking, the particle will not send visible wave movement as much as usual. The waves that that particle sends act like waves in the river when somebody drops a cork in the flow. 

That means the material doesn't act around black holes as it should act in a normal universe. So when we are modeling that material turns shorter when it reaches the speed of light, we are using a model. That is not suitable in the black hole and curvature universe. At least if there is something that makes the curve or gravitational pothole at the front of the traveling object. 

When a particle travels in a normal universe it faces the quantum field. That quantum field acts like air in the molecular world. It pushes the particle flat when it reaches the speed of light. The black hole will stretch that object. But there is one thing that people always forget when they are talking about the black hole and its interaction with its environment. Quantum fields near black holes are not static. 

Black holes pull the quantum fields or Higgs field in them. And that thing forms a situation where the particle travels into the black hole with the quantum field that travels like a river. So the virtual speed near the black hole is lower than it seems from outside that gravitational effect. That thing will push the object to form that looks like spaghetti. 

In some models, if some person sits in a spacecraft that reaches the speed of light that person sees that the universe turns smaller. The fact is that is the result of time dilation. But also the object's size turn smaller, and its shell turns larger in comparison to its internal structures. 

The light cone is the thing that shows the problem that a particle faces when it reaches the speed of light. The particle must press itself through the light wall. 

Then we can return to thinking about the particle's behavior when it closes to the speed of light in the normal universe. At first, the particle turns flat, and then it starts to create a pothole in the universe. 

Very fast-traveling particles form the pothole or channel behind them. The quantum field acts like water and when something very fast travels in it, it creates a channel behind it. That is similar to what a bullet makes in the air. So light travels behind that particle faster than outside that channel. 

And if there is some kind of light wave or light string that impacts the particle from backward it can make the situation where the particle will compress. If the superstring or extremely thin light string travels through the particle it acts like a thermal pump. That thermal pump transports energy out from the particle. And it also decreases the quantum pressure in it. That allows it to make a situation where the energy continues to travel in the particle. 


Comments

Popular posts from this blog

Quantum breakthrough: stable quantum entanglement at room temperature.

"Researchers have achieved quantum coherence at room temperature by embedding a light-absorbing chromophore within a metal-organic framework. This breakthrough, facilitating the maintenance of a quantum system’s state without external interference, marks a significant advancement for quantum computing and sensing technologies". (ScitechDaily, Quantum Computing Breakthrough: Stable Qubits at Room Temperature) Japanese researchers created stable quantum entanglement at room temperature. The system used a light-absorbing chromophore along with a metal-organic framework. This thing is a great breakthrough in quantum technology. The room-temperature quantum computers are the new things, that make the next revolution in quantum computing. This technology may come to markets sooner than we even think. The quantum computer is the tool, that requires advanced operating- and support systems.  When the support system sees that the quantum entanglement starts to reach energy stability. I

The anomalies in gravity might cause dark energy.

"Physicists at UC Berkeley immobilized small clusters of cesium atoms (pink blobs) in a vertical vacuum chamber, then split each atom into a quantum state in which half of the atom was closer to a tungsten weight (shiny cylinder) than the other half (split spheres below the tungsten). (ScitechDaily, Beyond Gravity: UC Berkeley’s Quantum Leap in Dark Energy Research) By measuring the phase difference between the two halves of the atomic wave function, they were able to calculate the difference in the gravitational attraction between the two parts of the atom, which matched what is expected from Newtonian gravity. Credit: Cristian Panda/UC Berkeley" (ScitechDaily, Beyond Gravity: UC Berkeley’s Quantum Leap in Dark Energy Research) Researchers at Berkeley University created a model that can explain the missing energy of the universe. The idea is that the particles and their quantum fields are whisk-looking structures. Those structures form the superstrings that are extremely thi

Neon and time crystals can be the new tools for quantum computing.

"New research investigates the electron-on-solid-neon qubit, revealing that small bumps on solid neon surfaces create stable quantum states, enabling precise manipulation. This research, supported by multiple foundations, emphasizes the importance of optimizing qubit fabrication, moving us closer to practical quantum computing solutions." (ScitechDaily, Quantum Riddle Solved? How Solid Neon Qubits Could Change Computing Forever) Researchers created a superposition in solid neon. And those neon ions, where the system creates superposition in their surfaces.  Making it possible to manipulate those atoms. The atom-based qubit has one problem. Orbiting electrons cause turbulence in their quantum fields. The thing that can solve the problem is to use the quantum fields for the superposition.  If the system can position electrons at a certain point, it can make a small hill to the atom's surface. And the system can use that thing for making quantum superposition between the mos