Skip to main content

The mysterious ghost particles cause grey hair for researchers.


When the particle's mass grows, the Higgs field turns more dominating. 


There is the possibility that the Higgs field will take energy out from particles. And other interactions are loading energy onto the particle. The thing that supports this theory is that a massless photon exists forever. Massless particles are not interacting with the Higgs field. And mass is the thing that means the particle has interaction with the Higgs field. 

The most massive particles Higgs boson and top quark live for a short time. The existence or lifetime of the top quark is 5×10^−25 s. And lifetime of the Higgs boson is 1.2 ~ 4.6 × 10−22 s^. The photon that has no interaction with the Higgs field remains forever. And the lifetime of a neutrino is also extremely long. 

So we can think that the Higgs field takes energy out from the particles. And other interactions are loading energy for it. So when a particle's mass increases. The Higgs field's domination increases. And the thing is that when the mass of a particle will rise, its lifetime turns shorter. 

So when we think about the lifetimes of the particles and their interaction with the Higgs field we can say that the growing mass of particles means. That the dominant interaction slides to the Higgs mechanism. And when the particle's mass decreases the dominating field turns to gravitation or electromagnetism or weak and strong interactions. 

"Candidate Higgs boson events from collisions between protons in the LHC" (Wikipedia/Higgs boson)

The mysterious ghost particles cause grey hair for researchers. 


Neutrinos are almost massless particles. Which means they have a very weak interaction with the Higgs field. That very weak interaction is interesting because neutrino can interact only between weak interaction (weak nuclear force) and gravitation. There is a possibility that the low mass of neutrino forms in an interaction where neutrino interacts with W and Z bosons. 

So in this model, W and Z bosons are transferring some kind of echoes from the Higgs field to the neutrino. And that means neutrinos would not have straight interaction with the Higgs field. The small mass means that the neutrino would turn to wave movement. 

The thing, that makes the neutrino interesting is that it can be a tensor or medium between the Higgs mechanism and the other four fundamental interactions. So there are particles. That can interact with other interactions except for the Higgs field. And some particles can interact only with the Higgs field. And we know only one of those particles, the Higgs boson. 

But we know that the mass of particles is directly proportional to interaction with the Higgs field. And massive particles like Top Quarks and Higgs bosons have extremely strong interaction with the Higgs field. Another thing is that the lifetime of those massive particles is extremely short. 

The existence or lifetime of the top quark is 5×10^−25 s. And lifetime of the Higgs boson is 1.2 ~ 4.6 × 10−22 s^. The photon that has no interaction with the Higgs field remains forever. And the lifetime of a neutrino is also extremely long. As I wrote earlier in this text. 

That means when the particle's mass grows, its interaction with the Higgs field grows. And higher mass means that the Higgs field turns more dominating than other interactions. And the Higgs boson that only interacts with the Higgs field would decay in the shortest time. The more dominant the effect of the Higgs field on the particle, the shorter-lived the particle is. 

When domination of the Higgs field increases other interactions turn recessive. So we can conclude that the Higgs field pulls energy out from particles. And other interactions are pumping energy to the particle making it longer-life, as I wrote at the beginning of this text. 


https://en.wikipedia.org/wiki/Higgs_boson


https://en.wikipedia.org/wiki/Neutrino


https://en.wikipedia.org/wiki/Top_quark


Comments

Popular posts from this blog

Quantum breakthrough: stable quantum entanglement at room temperature.

"Researchers have achieved quantum coherence at room temperature by embedding a light-absorbing chromophore within a metal-organic framework. This breakthrough, facilitating the maintenance of a quantum system’s state without external interference, marks a significant advancement for quantum computing and sensing technologies". (ScitechDaily, Quantum Computing Breakthrough: Stable Qubits at Room Temperature) Japanese researchers created stable quantum entanglement at room temperature. The system used a light-absorbing chromophore along with a metal-organic framework. This thing is a great breakthrough in quantum technology. The room-temperature quantum computers are the new things, that make the next revolution in quantum computing. This technology may come to markets sooner than we even think. The quantum computer is the tool, that requires advanced operating- and support systems.  When the support system sees that the quantum entanglement starts to reach energy stability. I

The anomalies in gravity might cause dark energy.

"Physicists at UC Berkeley immobilized small clusters of cesium atoms (pink blobs) in a vertical vacuum chamber, then split each atom into a quantum state in which half of the atom was closer to a tungsten weight (shiny cylinder) than the other half (split spheres below the tungsten). (ScitechDaily, Beyond Gravity: UC Berkeley’s Quantum Leap in Dark Energy Research) By measuring the phase difference between the two halves of the atomic wave function, they were able to calculate the difference in the gravitational attraction between the two parts of the atom, which matched what is expected from Newtonian gravity. Credit: Cristian Panda/UC Berkeley" (ScitechDaily, Beyond Gravity: UC Berkeley’s Quantum Leap in Dark Energy Research) Researchers at Berkeley University created a model that can explain the missing energy of the universe. The idea is that the particles and their quantum fields are whisk-looking structures. Those structures form the superstrings that are extremely thi

Neon and time crystals can be the new tools for quantum computing.

"New research investigates the electron-on-solid-neon qubit, revealing that small bumps on solid neon surfaces create stable quantum states, enabling precise manipulation. This research, supported by multiple foundations, emphasizes the importance of optimizing qubit fabrication, moving us closer to practical quantum computing solutions." (ScitechDaily, Quantum Riddle Solved? How Solid Neon Qubits Could Change Computing Forever) Researchers created a superposition in solid neon. And those neon ions, where the system creates superposition in their surfaces.  Making it possible to manipulate those atoms. The atom-based qubit has one problem. Orbiting electrons cause turbulence in their quantum fields. The thing that can solve the problem is to use the quantum fields for the superposition.  If the system can position electrons at a certain point, it can make a small hill to the atom's surface. And the system can use that thing for making quantum superposition between the mos