Skip to main content

The mysterious ghost particles cause grey hair for researchers.


When the particle's mass grows, the Higgs field turns more dominating. 


There is the possibility that the Higgs field will take energy out from particles. And other interactions are loading energy onto the particle. The thing that supports this theory is that a massless photon exists forever. Massless particles are not interacting with the Higgs field. And mass is the thing that means the particle has interaction with the Higgs field. 

The most massive particles Higgs boson and top quark live for a short time. The existence or lifetime of the top quark is 5×10^−25 s. And lifetime of the Higgs boson is 1.2 ~ 4.6 × 10−22 s^. The photon that has no interaction with the Higgs field remains forever. And the lifetime of a neutrino is also extremely long. 

So we can think that the Higgs field takes energy out from the particles. And other interactions are loading energy for it. So when a particle's mass increases. The Higgs field's domination increases. And the thing is that when the mass of a particle will rise, its lifetime turns shorter. 

So when we think about the lifetimes of the particles and their interaction with the Higgs field we can say that the growing mass of particles means. That the dominant interaction slides to the Higgs mechanism. And when the particle's mass decreases the dominating field turns to gravitation or electromagnetism or weak and strong interactions. 

"Candidate Higgs boson events from collisions between protons in the LHC" (Wikipedia/Higgs boson)

The mysterious ghost particles cause grey hair for researchers. 


Neutrinos are almost massless particles. Which means they have a very weak interaction with the Higgs field. That very weak interaction is interesting because neutrino can interact only between weak interaction (weak nuclear force) and gravitation. There is a possibility that the low mass of neutrino forms in an interaction where neutrino interacts with W and Z bosons. 

So in this model, W and Z bosons are transferring some kind of echoes from the Higgs field to the neutrino. And that means neutrinos would not have straight interaction with the Higgs field. The small mass means that the neutrino would turn to wave movement. 

The thing, that makes the neutrino interesting is that it can be a tensor or medium between the Higgs mechanism and the other four fundamental interactions. So there are particles. That can interact with other interactions except for the Higgs field. And some particles can interact only with the Higgs field. And we know only one of those particles, the Higgs boson. 

But we know that the mass of particles is directly proportional to interaction with the Higgs field. And massive particles like Top Quarks and Higgs bosons have extremely strong interaction with the Higgs field. Another thing is that the lifetime of those massive particles is extremely short. 

The existence or lifetime of the top quark is 5×10^−25 s. And lifetime of the Higgs boson is 1.2 ~ 4.6 × 10−22 s^. The photon that has no interaction with the Higgs field remains forever. And the lifetime of a neutrino is also extremely long. As I wrote earlier in this text. 

That means when the particle's mass grows, its interaction with the Higgs field grows. And higher mass means that the Higgs field turns more dominating than other interactions. And the Higgs boson that only interacts with the Higgs field would decay in the shortest time. The more dominant the effect of the Higgs field on the particle, the shorter-lived the particle is. 

When domination of the Higgs field increases other interactions turn recessive. So we can conclude that the Higgs field pulls energy out from particles. And other interactions are pumping energy to the particle making it longer-life, as I wrote at the beginning of this text. 


https://en.wikipedia.org/wiki/Higgs_boson


https://en.wikipedia.org/wiki/Neutrino


https://en.wikipedia.org/wiki/Top_quark


Comments

Popular posts from this blog

Black holes cause a virtual redshift because gravitation stretches the wavelength near them.

At the beginning of this text is a film about the redshift of black holes. Gravitation stretches light, and that means gravitation fields are pulling waves longer. That thing is called the gravitational redshift. As you can see from the film, the black hole stretches radiation and distorts the redshift. Gravitational redshift, or virtual redshift, means that a black hole might seem to be at a longer distance than it is. The film shows the redshift of the star that orbits a supermassive black hole. But all other black holes interact the same way.  The event horizon is always constant. At that point, the black hole's escaping velocity is the same as the speed of light. So every black hole interacts basically in the same way. And it's possible to apply that model to all black holes irrespective of their size.  Is gravitation the thing that forms dark energy? That thing seems somehow strange. But when photons and other particles are traveling through the ball that forms the visible

The shape of the brain means more than neuro connectivity.

Well, we might say that the brain is in its entirety. Another thing is that all things in the brain have some kind of purpose. The shape of the brain and, especially, the folding of the brain shell are extremely important things. Those folds are expanding the brain's surface areas. And the brain shell has a primary role in the thinking process. The surface area of the brain determines how large the cerebral cortex is. And in a large cerebral cortex, there are a large number of neurons. But as I just wrote, the brain is in its entirety. "Researchers have discovered that the shape of a person’s brain significantly impacts thought, feeling, and behavior, overturning the prevailing emphasis on complex neuronal connectivity. Utilizing MRI scans and the principle of eigenmodes, they found that brain function is closely linked to its geometric properties, much like how the shape of a musical instrument determines its sound, offering new avenues for exploring brain function and diseas

New nanomaterial is 4 times harder than steel. And, at the same time 5 times lighter than steel.

 New nanomaterial is 4 times harder than steel. And, at the same time 5 times lighter than steel.  The new material is the hollow glass fiber with DNA molecules inside that structure. Or as you see from the image. The glass fibers are on both sides of the DNA.  DNA molecule is the thing, that involves the genetic code of the cells. Genetically engineered cells can make DNA, and those molecules can used as the nanomaterial's structures. DNA manipulation makes it possible to create new types of extremely strong materials. And those materials are stronger than steel and lighter than it. DNA molecules can act as nano-size springs.  And in some visions, genetically engineered cyborg cells like cyborg macrophages can make extremely long DNA molecules. And then they can just use those molecules as spears that can pierce wanted cells. Or those cyborg cells can also dumb targeted cells full of the DNA that terminates them immediately.  The DNA and nanotube combinations can also act as DNA-b