Skip to main content

The MIT researchers controlled quantum randomness.



The quantum randomness means that the system status is not preordered before measurement. And the problem with that thing is that measurement requires energy from the system. So every time we try to measure the system, we affect its status. We don't know the system status before measurement. And that makes this thing problematic. Quantum computing requires precise and full knowledge of the system. Because if there is some kind of random actor that affects qubits,

The base of the qubit is in superposition with an elementary particle. When we think about quantum technology, that means there are dents in the elementary particle or its quantum field. The spin means that there is a possibility that the position of those dents is very hard to predict. And the quantum systems require full control of the qubits. If the system can control the positions of those small dents or potholes.

The other thing is that we cannot measure the depth of those quantum potholes before measurement. If the system can control quantum randomness, that is a great moment for quantum computers. Controlling the system before measurements can be made is done by pumping a certain number of photons that are at a certain energy level into the system.

The system will spit extra energy away when energy stress ends. The problem is that those photons must have the same energy load or energy level as the photon that is sent to the system. So that allows us to create sensors that pump single photons into the system.


When the system uses measurements, it sends photons to the system. Then that system releases its extra energy back to the sender. And if the environment is stable, that extra energy has the same level as the energy that is pumped into the targeted system.

The system releases the number of photons that match the sum of the energy of all photons pumped into the system. If conditions are stable, the system releases the energy that is pumped into it. And that makes it easier to control the information that the system delivers. That thing can also make measurements where it is possible to measure the energy that travels through the measurement tool. And that thing is the key to the next-generation quantum systems.

Basically, one of the things that we must realize is that the qubit must be fully controlled so that there is some kind of benefit from it. Control means measurement. Without measurements, the system doesn't know. What is the energy level of the qubits? And when data transportation into the qubit starts, the system must know the energy level at the moment when it transports data to the system.


https://phys.org/news/2023-08-quantum-sensors-paving-technologies.html

https://thedebrief.org/impossible-science-mit-scientists-successfully-demonstrate-first-ever-control-over-quantum-randomness/

Comments

Popular posts from this blog

Black holes cause a virtual redshift because gravitation stretches the wavelength near them.

At the beginning of this text is a film about the redshift of black holes. Gravitation stretches light, and that means gravitation fields are pulling waves longer. That thing is called the gravitational redshift. As you can see from the film, the black hole stretches radiation and distorts the redshift. Gravitational redshift, or virtual redshift, means that a black hole might seem to be at a longer distance than it is. The film shows the redshift of the star that orbits a supermassive black hole. But all other black holes interact the same way.  The event horizon is always constant. At that point, the black hole's escaping velocity is the same as the speed of light. So every black hole interacts basically in the same way. And it's possible to apply that model to all black holes irrespective of their size.  Is gravitation the thing that forms dark energy? That thing seems somehow strange. But when photons and other particles are traveling through the ball that forms the visible

The shape of the brain means more than neuro connectivity.

Well, we might say that the brain is in its entirety. Another thing is that all things in the brain have some kind of purpose. The shape of the brain and, especially, the folding of the brain shell are extremely important things. Those folds are expanding the brain's surface areas. And the brain shell has a primary role in the thinking process. The surface area of the brain determines how large the cerebral cortex is. And in a large cerebral cortex, there are a large number of neurons. But as I just wrote, the brain is in its entirety. "Researchers have discovered that the shape of a person’s brain significantly impacts thought, feeling, and behavior, overturning the prevailing emphasis on complex neuronal connectivity. Utilizing MRI scans and the principle of eigenmodes, they found that brain function is closely linked to its geometric properties, much like how the shape of a musical instrument determines its sound, offering new avenues for exploring brain function and diseas

New nanomaterial is 4 times harder than steel. And, at the same time 5 times lighter than steel.

 New nanomaterial is 4 times harder than steel. And, at the same time 5 times lighter than steel.  The new material is the hollow glass fiber with DNA molecules inside that structure. Or as you see from the image. The glass fibers are on both sides of the DNA.  DNA molecule is the thing, that involves the genetic code of the cells. Genetically engineered cells can make DNA, and those molecules can used as the nanomaterial's structures. DNA manipulation makes it possible to create new types of extremely strong materials. And those materials are stronger than steel and lighter than it. DNA molecules can act as nano-size springs.  And in some visions, genetically engineered cyborg cells like cyborg macrophages can make extremely long DNA molecules. And then they can just use those molecules as spears that can pierce wanted cells. Or those cyborg cells can also dumb targeted cells full of the DNA that terminates them immediately.  The DNA and nanotube combinations can also act as DNA-b