Sunday, March 23, 2025

New supermaterials are game-changers.



"A section of the atomic structure of a cadmium selenide nanoparticle (left) with an incorporated foreign mercury atom; and an artistic representation of a highly magnified nanoplatelet with mercury defects at its active corners (right). Credit: B. Schröder/HZDR" (ScitechDaily, What Happens When You Swap Atoms? A Nanotech Revolution Begins)

Nanotechnology is the game changer. An ability to swap atoms precisely in the structure opens new tools for material technology and medical systems. Intelligent proteins that store their movement series and then make those movements backward make it possible to create nano-size robots that can go into individual cells. The knowledge of the weak force makes it possible to create things like materials that can repair themselves. The ability to connect memristors in the structure allows create of intelligent structures. 

The atom swapping and ability to affect the atom's ionization is useful in the layers like blades. 

That should remove things with very high accuracy. The idea is that the edge of the blade is made of ions. When the blade hits something electrons fall to fill those holes. 

And that makes the energy impulse to that edge. Nanotechnology requires the ability to create impressive things. 

Like nano-structures that conduct energy only in one direction. The idea is that the energy can move only one way if there are so-called energy stairs away from the energy hilltop. If the energy that travels from the hilltop is very powerful it transports those stading waves away.  But then energy must slide over those particles. If that does not happen that energy pulls those particles with it. 


"A new kind of memristor mimics how the brain learns by combining analog and digital behavior, offering a promising solution to the problem of AI “catastrophic forgetting.” (ScitechDaily, A new kind of memristor mimics how the brain learns by combining analog and digital behavior, offering a promising solution to the problem of AI “catastrophic forgetting".)

This makes it possible to connect computers and material structures to intelligent materials. And install data handling capacity into other materials.  

Supermaterials are things that can conduct impact energy out from structure very fast. If we think about saucer-shaped structures that edge is at a very low energy level and something hits the middle of that structure. That thing allows structure to conduct the energy out of it.

When we think about things like energy-absorbing materials there is the possibility to make materials that tie all energy in it's structures. But the next problem is that. If the energy level rises too high in the structure forms standing waves that push its particles away. And breaks the structure. If the system can remove or suck those standing waves away it will stand against almost all possible temperatures. 

The thing that destroys material is the standing wave that forms between its particles. The standing wave forms when material releases its energy. So the thing that destroys structure is not the heat or energy. The thing that destroys material is the end of the energy pump. When the energy pump ends particles in the structure release their extra energy. And that energy forms those fatal standing waves. But if the system can suck those standing waves out. That makes the structure stand. 

In some possible way to handle temperature is the thermal pump that transfers energy binder through the materials. The system can use things like airflow, electron flow, or laser beams that travel in the material. Those things will transport energy out from the material. 

It is also possible to create a structure that creates a standing wave or infrared wall that denies heat or IR radiation travel through that wall of coherent IR radiation. The long wires can move in and out of the material like a conveyor belt. It takes energy with it. And transports it to medium. 



"Artistic visualization of a crystalline rod made of the semimetal ZrTe5. There is a heat gradient from one end to the other. In its center, giant oscillations in its heat conduction are toggled by the magnetic field, which is generated by the electromagnet below. Credit: B. Schröder/HZDR" (ScitechDaily, A Quantum Metal Just Changed What We Know About Heat)

Schrodinger's cat state in the material makes it possible to create the nano-size diodes. In that state where the material is hot and cold at the same time energy travels in one direction. Those diodes can revolutionize the superconducting technology. 

The Schrödinger's state in material research. 

We can say that Schrödinger's state in material is that. That material is hot and cold at the same time. The heat travels to the cold part. That allows the material to stand against ultimate temperatures. We can describe Scrödinger's state in material by using a space probe as an example. If the space probe goes near the sun it melts because of the heat. But if the probe has a place where it can put that thermal energy. 

Theoretically, it can travel inside the Sun. The answer to the heat problem could be the extremely long wire that can transfer heat energy out from the probe. But there is another way to make the energy dump. That dump requires nano- or quantum balls that store energy inside them. So the system transforms thermal energy into kinetic energy. 

The new quantum materials are revolutionizing our way of understanding things like heat. The new types of quantum materials can create an energy flow that transports heat out of the system. That phenomenon is possible in the ultra-cold systems. But maybe that research brings us new products. 


https://scitechdaily.com/this-brain-inspired-memristor-could-finally-solve-ais-catastrophic-forgetting/


https://scitechdaily.com/a-quantum-metal-just-changed-what-we-know-about-heat/


 https://scitechdaily.com/weak-forces-super-materials-the-breakthrough-changing-material-science/


https://scitechdaily.com/what-happens-when-you-swap-atoms-a-nanotech-revolution-begins/


https://en.wikipedia.org/wiki/Memristor

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.

Black holes, spin, and gravitation.

The image introduces how gravity or gravitational waves form when black holes orbit each other. Those black holes pile energy between them. ...