Skip to main content

Energy rips "W" boson to pieces. So could some yet unknown boson be the source of the Dark Energy?



"W"-boson


The shape of the "W" boson is like the "X"-letter. When the end of the aisle of the "W" boson hits energy or wave movement it starts to flow in both directions. To the middle and outside the "W" boson. The core of the "W" boson channels energy to the center of the boson. And then the energy starts to flow back to the aisle of the "X"-shaped structure. When energy hits to "W" boson it affects to entire boson. 

And part of it would tunnel itself into the aisle. That tunneled energy flow will increase the level of the energy of the wave movement that travels back to the end of the aisle. The wave movement is pushing the most out parts of the boson outside. And finally, the boson is ripping into pieces. That thing releases energy that is stored in the boson. 

The wave movement always travels from the area that is the highest energy level to lower energy level areas. And that causes the thing that energy is connecting the wave movement to the "W" boson. And the same energy rips it to pieces. And that brings interesting things to my mind. 

That thing is could the dark energy form in some kind of boson? When energy travels in the "W" and "Z" bosons. They also send radiation or wave movement that oscillates other "W" bosons. Those bosons are gauge bosons, which spin is 1. 




Image 2) Standard model


Why leptons cannot form similar structures as quarks?


The reason why bosons cannot create similar connections with quarks is that their spin is 1. That means that gluons cannot touch those particles. The spin of quarks is 1/2. And that can be the reason why quarks can from protons or neutrons. The spin of the electrons, muons, and gluons is also 1/2. And the question is why they cannot form similar structures with quarks? 

The reason for that can be in those particles' electric charge. There is the possibility that the electromagnetic charge will be stronger than the gluon-interaction called strong interaction or strong nuclear force. The reason for that is that the effect of the electromagnetic interaction between elementary particles affects longer distances than strong interaction. The strong interaction is the interaction between quark and gluon. And strong interaction ties quarks to structures like protons and neutrons. 

So the electromagnetic interaction with the same polar elementary particles pushes particles away from each other before the gluonic interaction or strong interaction can begin. And the reason why quark can form structures like protons and neutrons is that its electric charge is so weak. 

The quark's weak electric charge causes the gluon can jump between quarks before the electromagnetic interaction can affect those particles. The transporter particle of quantum electromagnetism or quantum electrodynamics is a photon. Quantum electrodynamics is the electromagnetic effect between elementary particles. 

The electric charge of leptons is 1 or -1. The electric charge of quark is 2/3e or -1/3e. So the electric charge of electrons and other leptons will push those particles away from each other. 




Image 3: Formulas of the "W" boson breakup (Wikipedia)


Is the origin of the dark energy some unknown boson? 


But could there be some missing boson, that sends the wave movement? This dark wave movement rips the universe to pieces. But what is its origin? When we are thinking about the scattering of short-living high-energy particles. 

There is the possibility that there is some kind of medium. That forms before the "W" boson turns to wave movement. So before the formula of the "W" boson turns true and its particular existence ends there could be some other particle. That means the medium particle could be so short-living that researchers cannot just detect the radiation that this particle sends. And that's why those hypothetical particles can be called "flashlight particles".  But where are those particles? There is the possibility that there is some heavier particle than "Z" and "W" bosons. 

So what does that mean? That means we should prepare to fill the Standard model with new members. Those new members can be the hypothetical graviton but also there might be missing scalar bosons. Scalar boson means that the spin of those bosons equals zero. That means those bosons would not send the wave movement and it makes them hard to see. The Higgs boson is the only known scalar boson. But there is a possibility that there is more than one scalar boson waiting for finding. 


https://scitechdaily.com/a-decade-of-science-and-trillions-of-collisions-show-the-w-boson-is-more-massive-than-expected-a-physicist-explains-what-it-means/


https://en.wikipedia.org/wiki/Dark_energy


https://en.wikipedia.org/wiki/Electromagnetism


https://en.wikipedia.org/wiki/Electron


https://en.wikipedia.org/wiki/Fermion


https://en.wikipedia.org/wiki/Fundamental_interaction


https://en.wikipedia.org/wiki/Gauge_boson


https://en.wikipedia.org/wiki/Gluon


https://en.wikipedia.org/wiki/Gravity


https://en.wikipedia.org/wiki/Lepton


https://en.wikipedia.org/wiki/Muon


https://en.wikipedia.org/wiki/Quantum_electrodynamics


https://en.wikipedia.org/wiki/Quark


https://en.wikipedia.org/wiki/Scalar_boson


https://en.wikipedia.org/wiki/Strong_interaction


https://en.wikipedia.org/wiki/Tau_(particle)


https://en.wikipedia.org/wiki/W_and_Z_bosons


https://en.wikipedia.org/wiki/Weak_interaction

Comments

Popular posts from this blog

The anomalies in gravity might cause dark energy.

"Physicists at UC Berkeley immobilized small clusters of cesium atoms (pink blobs) in a vertical vacuum chamber, then split each atom into a quantum state in which half of the atom was closer to a tungsten weight (shiny cylinder) than the other half (split spheres below the tungsten). (ScitechDaily, Beyond Gravity: UC Berkeley’s Quantum Leap in Dark Energy Research) By measuring the phase difference between the two halves of the atomic wave function, they were able to calculate the difference in the gravitational attraction between the two parts of the atom, which matched what is expected from Newtonian gravity. Credit: Cristian Panda/UC Berkeley" (ScitechDaily, Beyond Gravity: UC Berkeley’s Quantum Leap in Dark Energy Research) Researchers at Berkeley University created a model that can explain the missing energy of the universe. The idea is that the particles and their quantum fields are whisk-looking structures. Those structures form the superstrings that are extremely thi...

When the most advanced tool becomes the enemy of advance.

Why... Above this text is the image that is not made by using AI. I took that image yesterday evening. That thing required a little bit of trouble and time. Walking into that point, taking my cell phone, and taking that picture took time. When I looked at that picture I realized why people use AI in many things. AI offers easy things to get the job done. That easy tool allows people to make thousands of lines of code in minutes.  That is possible if the person uses some code libraries. And that makes a person effective. But that thing is not good for advancement and innovation. Also, that way of making programs is not good for data security. If some hackers get those code libraries that allow them to break the systems those codes are used.  We know that thing. But we ever ask why person makes that thing? Why does that person use libraries and copy-paste? Why that person uses code, that somebody gave to the hard disk? The answer is this something forces a person to make things ...

Neon and time crystals can be the new tools for quantum computing.

"New research investigates the electron-on-solid-neon qubit, revealing that small bumps on solid neon surfaces create stable quantum states, enabling precise manipulation. This research, supported by multiple foundations, emphasizes the importance of optimizing qubit fabrication, moving us closer to practical quantum computing solutions." (ScitechDaily, Quantum Riddle Solved? How Solid Neon Qubits Could Change Computing Forever) Researchers created a superposition in solid neon. And those neon ions, where the system creates superposition in their surfaces.  Making it possible to manipulate those atoms. The atom-based qubit has one problem. Orbiting electrons cause turbulence in their quantum fields. The thing that can solve the problem is to use the quantum fields for the superposition.  If the system can position electrons at a certain point, it can make a small hill to the atom's surface. And the system can use that thing for making quantum superposition between the mos...