Skip to main content

The new one-way superconductor will make possible the new types of microchips. And it can allow the making of solid-silicon-based quantum computers.




One-way superconductors are making it possible to create superconducting diodes. Those systems are driven electricity in one direction. And that thing makes it possible to create solid quantum computers. The simplest model of the solid quantum computer chip is the system where data travels in the superconducting wires. That system looks a little bit like a guitar. Each wire and the changes in the voltage are the certain layers or states of the qubit. 

That thing makes those systems more compact. Also, that thing makes them less sensitive to electromagnetic stress. The superconducting systems are interesting because when electricity travels in the superconducting circuit it keeps its form. And that thing makes it possible to drive data to the quantum state of memory for resending through quantum computers. 

There is also the second possibility to make a compact quantum computer. That thing is based on miniature technology. That possibility is less radical than the solid superconducting system. The superconducting diodes are making it easier to transform binary data to the qubit.  And the reason for that is simple. The electricity that travels in the superconducting wires keeps its form. 

Loading data to qubit might seem very difficult. The qubit will stress by a certain level of electromagnetic radiation. And the data that flows from the wire is stored to a certain energy level in the qubit. So the energy level of the qubit turns to a certain level. Then the small data bite will drive to that qubit. Then the laser will send that data forward. Data flow will be cut into pieces before this operation. And the remarkable thing is that the system adjusts the energy level of the receiving part. 

The binary data will transform to the quantum mode by using the quantum memory as the medium. Binary data flow will be driven to quantum memory and transformed to qubit mode. When data turned back to binary mode. Each layer of the qubit will load to wire one after one. And that allows the binary computer to handle that data. 

The futuristic quantum microchip can have two superconducting silicone layers. And between them is the photon crystals where are photons. That is superpositioned and entangled. Those photons are superpositioned and entangled through the nanotubes that also protect them against electromagnetic turbulence. 

The distance between those photon crystals could be less than a micrometer. And the system is based on the idea that the data flow will be cut into pieces before it will be driven to the solid layer. There those data bites will drive to the quantum memory. And then resend through those photons. 


https://scitechdaily.com/breakthrough-discovery-of-the-one-way-superconductor-thought-to-be-impossible/


Image:) https://scitechdaily.com/breakthrough-discovery-of-the-one-way-superconductor-thought-to-be-impossible/


https://artificialintelligenceandindividuals.blogspot.com/

Comments

Popular posts from this blog

Quantum breakthrough: stable quantum entanglement at room temperature.

"Researchers have achieved quantum coherence at room temperature by embedding a light-absorbing chromophore within a metal-organic framework. This breakthrough, facilitating the maintenance of a quantum system’s state without external interference, marks a significant advancement for quantum computing and sensing technologies". (ScitechDaily, Quantum Computing Breakthrough: Stable Qubits at Room Temperature) Japanese researchers created stable quantum entanglement at room temperature. The system used a light-absorbing chromophore along with a metal-organic framework. This thing is a great breakthrough in quantum technology. The room-temperature quantum computers are the new things, that make the next revolution in quantum computing. This technology may come to markets sooner than we even think. The quantum computer is the tool, that requires advanced operating- and support systems.  When the support system sees that the quantum entanglement starts to reach energy stability. I

The anomalies in gravity might cause dark energy.

"Physicists at UC Berkeley immobilized small clusters of cesium atoms (pink blobs) in a vertical vacuum chamber, then split each atom into a quantum state in which half of the atom was closer to a tungsten weight (shiny cylinder) than the other half (split spheres below the tungsten). (ScitechDaily, Beyond Gravity: UC Berkeley’s Quantum Leap in Dark Energy Research) By measuring the phase difference between the two halves of the atomic wave function, they were able to calculate the difference in the gravitational attraction between the two parts of the atom, which matched what is expected from Newtonian gravity. Credit: Cristian Panda/UC Berkeley" (ScitechDaily, Beyond Gravity: UC Berkeley’s Quantum Leap in Dark Energy Research) Researchers at Berkeley University created a model that can explain the missing energy of the universe. The idea is that the particles and their quantum fields are whisk-looking structures. Those structures form the superstrings that are extremely thi

Neon and time crystals can be the new tools for quantum computing.

"New research investigates the electron-on-solid-neon qubit, revealing that small bumps on solid neon surfaces create stable quantum states, enabling precise manipulation. This research, supported by multiple foundations, emphasizes the importance of optimizing qubit fabrication, moving us closer to practical quantum computing solutions." (ScitechDaily, Quantum Riddle Solved? How Solid Neon Qubits Could Change Computing Forever) Researchers created a superposition in solid neon. And those neon ions, where the system creates superposition in their surfaces.  Making it possible to manipulate those atoms. The atom-based qubit has one problem. Orbiting electrons cause turbulence in their quantum fields. The thing that can solve the problem is to use the quantum fields for the superposition.  If the system can position electrons at a certain point, it can make a small hill to the atom's surface. And the system can use that thing for making quantum superposition between the mos