Skip to main content

There are two ways to make quantum systems exchange information.

 

The first method is to raise the energy level of the particles and make them resonate with the same frequency. Another method is to use two connector particles and use a very low energy level as a medium that transmits information between the systems. 

The problem with quantum communication is simple how to adjust those systems in the same frequency. Above this text is Maurits Escher's painting "Waterfall". And that thing can introduce one of the biggest problems with the quantum system. 

If we want to change information between two towers of that system, we must adjust those towers in the same frequency. And then make the quantum entanglement between those towers. 

Because those towers are part of the same quantum system, there is the possibility to make those crystals resonate and exchange information. But then we can think that the actor that sends information will throw the information from another tower to the next there is the possibility that the information transmitted will miss that receiver tower. 

There would be outcoming energy that destroys the resonation. And that thing makes information go somewhere else it should. 

We always think that information must travel through the system from upward. In that way, system operators would rise the energy level of the quantum participants of the communication. And that thing requires very high accuracy. 

The quantum entanglement and superposition are like a bridge between those towers. In that case, the energy level of those towers will rise to the same level. And then the material or elementary particles will put to resonate with the same frequency. Then the sender side of the superpositioned quantum entanglement will rise to a higher level. 

And that makes the information flow. When the energy level of quantum entanglement rises to the same level, the radiation that the sides of that quantum entanglement will break the entirety by pushing those superpositioned and entangled particles away. That's why the quantum entanglement can stay only a short time. 


The low-energy communication model. 


But there is another way to think about quantum communication. If the system wants to transmit information between those towers it can use four actors in that process. The first actor can drop the information to the second actor. 

That stands at the quantum structure's base floor or base energy level. Then that actor transfer information to the actor that is below the second tower. And the third actor will drop the wire and pull that message or information up to the second or receiving tower. 

Or airflow or energy that is driven behind (or below) that particle. Rises information to the particle at the top of receiving tower. 

There is needed two actors on the ground floor is simple. The system must drive information under the receiving tower. So that's why there needed two actors. And the receiving actor's energy level must be lower. 

This thing is called under-energetic communication. In that version of the communication, the system falls information to the lowest possible energy level. The system drives information to the Bose-Einstein condensate. 

Then that condensate will transfer information to the 2D quasiparticle. And then the laser ray will drive behind that quasiparticle and that makes the information travel from the quasiparticle to the top of the receiving tower to a particle that is waiting for the information. 

The thing that makes this process difficult is the complexity of the system. It's difficult to find the receiving tower in complex systems. Adjusting those systems is very hard. The information transporter must find the right route to the receiving tower. And that is very difficult. The route can be a series of particles that resonate with the same frequency but the energy level turns lower all the time. 


https://artificialintelligenceandindividuals.blogspot.com/



Comments

Popular posts from this blog

Quantum breakthrough: stable quantum entanglement at room temperature.

"Researchers have achieved quantum coherence at room temperature by embedding a light-absorbing chromophore within a metal-organic framework. This breakthrough, facilitating the maintenance of a quantum system’s state without external interference, marks a significant advancement for quantum computing and sensing technologies". (ScitechDaily, Quantum Computing Breakthrough: Stable Qubits at Room Temperature) Japanese researchers created stable quantum entanglement at room temperature. The system used a light-absorbing chromophore along with a metal-organic framework. This thing is a great breakthrough in quantum technology. The room-temperature quantum computers are the new things, that make the next revolution in quantum computing. This technology may come to markets sooner than we even think. The quantum computer is the tool, that requires advanced operating- and support systems.  When the support system sees that the quantum entanglement starts to reach energy stability. I

The anomalies in gravity might cause dark energy.

"Physicists at UC Berkeley immobilized small clusters of cesium atoms (pink blobs) in a vertical vacuum chamber, then split each atom into a quantum state in which half of the atom was closer to a tungsten weight (shiny cylinder) than the other half (split spheres below the tungsten). (ScitechDaily, Beyond Gravity: UC Berkeley’s Quantum Leap in Dark Energy Research) By measuring the phase difference between the two halves of the atomic wave function, they were able to calculate the difference in the gravitational attraction between the two parts of the atom, which matched what is expected from Newtonian gravity. Credit: Cristian Panda/UC Berkeley" (ScitechDaily, Beyond Gravity: UC Berkeley’s Quantum Leap in Dark Energy Research) Researchers at Berkeley University created a model that can explain the missing energy of the universe. The idea is that the particles and their quantum fields are whisk-looking structures. Those structures form the superstrings that are extremely thi

Neon and time crystals can be the new tools for quantum computing.

"New research investigates the electron-on-solid-neon qubit, revealing that small bumps on solid neon surfaces create stable quantum states, enabling precise manipulation. This research, supported by multiple foundations, emphasizes the importance of optimizing qubit fabrication, moving us closer to practical quantum computing solutions." (ScitechDaily, Quantum Riddle Solved? How Solid Neon Qubits Could Change Computing Forever) Researchers created a superposition in solid neon. And those neon ions, where the system creates superposition in their surfaces.  Making it possible to manipulate those atoms. The atom-based qubit has one problem. Orbiting electrons cause turbulence in their quantum fields. The thing that can solve the problem is to use the quantum fields for the superposition.  If the system can position electrons at a certain point, it can make a small hill to the atom's surface. And the system can use that thing for making quantum superposition between the mos